
MATH 33A Worksheet Week 3 Solutions

TA: Emil Geisler and Caleb Partin

April 18, 2024

Exercise 1. Compute the following or state that it is not defined.

(a)

4 2 0
1 −1 1
0 2 1

12
3



(b)

4 2 3
0 0 0
1 1 1

 4 2
0 1
−1 −1



(c)

4 2 3
0 0 0
1 1 1

[
1 2 3
−1 0 1

]

(d)
[
0 1 3 2

] 
1
−1
0
3



(a)

82
7



(b)

13 7
0 0
3 2


(c) Not defined, 3 × 3 and 2 × 3 can’t be multiplied since 2 ̸= 3. Notice that the other way,

(2× 3) · (3× 3) works.

(d) The 1× 1 matrix
[
5
]
. Sometimes we treat this as just a single number, 5.
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Exercise 2. For each of the following linear transformations T : R2 → R2, find the corresponding
matrix that represents T :

(a) Rotate any vector v⃗ counter-clockwise by an angle of π
2
radians

(b) Projection onto the x-axis

(c) Projection onto the y-axis

(d) First reflect a vector across the line y = x, then rotate it by π
2
radians. (We have matrices

A and B that represent both steps of this linear transformation, and a single matrix C that
represents the whole transformation. What is the relationship between A,B and C?)

(a)

[
0 −1
1 0

]

(b)

[
1 0
0 0

]

(c)

[
0 0
0 1

]

(d)

[
0 −1
1 0

] [
0 1
1 0

]
=

[
−1 0
0 1

]
Notice that composition of linear transformations is given by mul-

tiplication of the corresponding matrices. And order is important, the first transformation we
do is given by the rightmost matrix, with subsequent transformations given by multiplication
by a matrix on the left.

Exercise 3. Let e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...0
1

 be the standard basis vectors of Rn. Show

that if A is an m× n matrix such that A · e1 = A · e2 = · · · = A · en = 0⃗, then A is the zero matrix.

Let A have column vectors v1, v2, . . . , vm. Then A · e1 = v1 = 0⃗. Moreover, A · ei = vi = 0 for all
the standard basis vectors. Therefore, the first column of A is zero, the second column of A is zero,
and so on, so A is all zeroes.
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Exercise 4. Compute the following for all θ ∈ R:[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
What linear transformation do each of these matrices represent? What is the geometric interpreta-
tion of the matrix you get as their product?

=

[
cos2(θ) + sin2(θ) 0

0 cos2(θ) + sin2(θ)

]
=

[
1 0
0 1

]
Notice that the first matrix is rotation by θ, and the second matrix is rotation by −θ since cos(−θ) =
cos(θ) and sin(−θ) = − sin(θ). That is why their product is the identity matrix, since they are
inverses as functions R2 → R2. We’ll understand this more when we do inverses.

Exercise 5. (Challenge Problem): Let F : Rn → Rm be a function which satisfies R-linearity:
F (v⃗ + aw⃗) = F (v⃗) + aF (w⃗) for all v⃗, w⃗ ∈ Rn, a ∈ R.
Prove that as functions Rn → Rm, F = A where A is the matrix with ith column vector equal to
F (ei). (Notice that every R-linear function F : Rn → Rm is also linear, by letting λ = 1.) This
shows that every R-linear function is a matrix.

Let v⃗ =

v1...
vn

 ∈ Rn by any vector in Rn. Note that by the definition of vector addition in Rn,

v⃗ =
∑n

i=1 viei.
First let’s see what A does to this vector under matrix multiplication. Recall that the columns of
A are given by F (ei), and so we will get that Av⃗ =

∑n
i=1 F (ei)vi.

Now let’s evaluate F (v⃗):

F (v⃗) = F (
n∑

i=1

viei)

=
n∑

i=1

F (viei) (⋆)

=
n∑

i=1

viF (ei) (⋆)

= Av⃗.

The two steps denoted by (⋆) are done using the fact that F is given to be R-linear, and so we can
commute F with summation and scalar multiplication by scalars in R.
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Notice that by these equalities, we can see that F (v⃗) = Av⃗ for all vectors in Rn, and thus they
define the same function Rn → Rn
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